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Metabolism is a representation of the biochemical principles that govern the produc-
tion, consumption, degradation, and biosynthesis of metabolites in living cells. Organ-
isms respond to changes in their physiological conditions or environmental perturbations
(i.e. constraints) via cooperative implementation of such principles. Querying inner work-
ing principles of metabolism under different constraints provides invaluable insights for
both researchers and educators. In this paper, we propose a metabolism query language
(MQL) and discuss its query processing. MQL enables researchers to explore the behav-
ior of the metabolism with a wide-range of predicates including dietary and physiolog-
ical condition specifications. The query results of MQL are enriched with both textual
and visual representations, and its query processing is completely tailored based on the
underlying metabolic principles.

Keywords: Metabolism; query language; biochemical networks; metabolomics; metabolic
pathways; physiological states; metabolite changes; metabolic perturbations; metabolic
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1. Introduction

Metabolic pathways describe the biochemical processes that are essential to survival
and adaptation of organisms in different environments. Metabolism is governed via
the collaborative work of such cellular processes with complex and highly devel-
oped regulation mechanisms. Sophisticated organization and control of metabolism
is crucial for organisms to maintain an adaptive and dynamic behavior in differ-
ent physiological conditions. Querying metabolism under different stress conditions
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enables life science researchers and students to gain insight about the possible
behavior of metabolism.

In this paper, we (a) propose the Metabolism Query Language (MQL) that
allows users to pose in-depth biochemistry-based queries, (b) discuss query pro-
cessing needs of MQL at a comprehensive level of metabolic biochemistry, and (c)
present query processing techniques for MQL. To this end, we characterize essential
biochemistry principles into 20 query processing rules which serve as the underlying
framework for MQL’s query processing specification. More specifically, MQL takes
into consideration (i) regulative relationships between different cellular processes,
(ii) functional and physical pools of metabolites, (iii) functional differentiation of
biological compartments, (iv) variations in trigger conditions for activation/ inhi-
bition of different processes, and (v) distinct enzyme regulation mechanisms.

MQL enables users to specify multiple and different classes of queries, such
as (i) computing (and visualizing) “Activated/Inactivated (metabolic) Paths” with
increased and decreased fluxes under specified physiological conditions (MQLAIP

queries), (ii) identifying/verifying “Potential Futile Cycles” (MQLPFC queries),
(iii) querying for required metabolic concentration change sets to prevent a par-
ticular futile cycle, (iv) searching for concentration change sets which lead to
the (in)activation of a user-specified metabolic subnetwork, and (v) exploring the
metabolic behavior of a set of (possibly reversible) reactions. Our framework allows
users to input concentration change statements on key metabolites, and incorpo-
rates such input into its query processing. This work expands beyond MQL, and con-
stitutes a computational infrastructure for an informed reasoning of metabolomics
data.1 Please note that, while MQL visualizes its query outputs, pathway visual-
ization issues are not the focus of this paper, and not discussed.

To demonstrate the capabilities of MQL framework, we employ, as an example,
computational modeling of mammalian (in particular, human) metabolism, and
specifying and processing queries over its metabolic network. In this study, we
focus only on MQLAIP and MQLPFC queries. Next, we illustrate MQLAIP queries
with an example.

1.1. A query template and its instance

A pathway consists of a consecutive sequence of biochemical reactions (steps), where
each product (output) of a reaction becoming a substrate (input) of the following
reaction. Each pathway has a certain set of starting substrates, intermediates, and
end-products. Hence, all the reactions in a pathway work towards a common goal:
converting substrate(s) of the pathway into the product(s) of the pathway.

Next we informally specify MQLAIP queries via a “template” and illustrate with
an example.

MQLAIP Query Template:

Given: I. A subset P of pathways in the human metabolic network
II. A set of biological compartments



April 6, 2010 14:26 WSPC/185-JBCB S0219720010004604

Querying Metabolism Under Different Physiological Constraints 249

III. A set C of conditions specifying

1. Metabolic and dietary states/physiological conditions, e.g. those
that control the fuel consumption of the metabolism (such as
fasting, starvation, after-a-meal-devoid-of-carbohydrates, dietary
imbalance, alcohol consumption), or specific disease states such as
diabetes, and/or

2. State changes (increases/decreases) of “key metabolites” such as
increases in lactate, pyruvate, amino acids.

(a) Find activated (increased flux) and inactivated (decreased flux) paths in
selected pathways in P (i.e. explicitly show the activated/inactivated flux direc-
tions).

(b) Visualize a selected subset of pathways in P in full and the remainder in
collapsed form, for simplicity in visualization.

(c) Using the metabolic biochemistry, explain the reasons for blocked (i.e. inacti-
vated) reaction directions in the selected subnetwork.

Next we present a sample query that follows from the above query template.

A Sample MQLAIP Query Instance and Its Output:

Given: I. Selected pathways P : Glycolysis, Gluconeogenesis, TCA Cycle, Beta
Oxidation, Ketone Body Synthesis, and Fatty Acid Synthesis

II. Selected biological compartment(s): Mitochondrion, Cytosol, and
Endoplasmic Reticulum, all in Liver

III. A set C of conditions:

1. Dietary state(s) and/or physiological condition(s): Fasting
2. Some key metabolite concentration changes (increases/decreases):

lactate↑, alanine↑, triglyceride constituents↑ (i.e. fatty acids ↑ and
glycerol↑)

(a) Find activated/inactivated paths in the metabolic subnetwork that consists
of Glycolysis, Gluconeogenesis, TCA Cycle, Beta Oxidation, Ketone Body
Synthesis, and Fatty Acid Synthesis

(b) Visualize Glycolysis, Gluconeogenesis, and TCA cycle in full form, and the
remainder of the pathways in collapsed form

(c) Explain the reasons for blocked reaction directions in pathways of P .

Query Result:

(a) Paths with increased flux rates (shown as bold edges in Fig. 1).
(b) Collapsed (shown as double-arrow edges in Fig. 1) and full forms of pathways.
(c) Explanations for blocked reaction directions in the selected subnetwork:

• TCA cycle is inhibited due to increased NADH synthesis in Beta Oxidation
(shown in Fig. 1 with three NADH inhibitors inhibiting the productions of
Acetyl CoA, α-ketogluterate, and Succinyl CoA).
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Metabolic pathways Glycolysis, Gluconeogenesis, TCA Cycle: Shown in full,

Metabolic pathways Beta Oxidation, Ketone Body Synthesis, and Fatty Acid Synthesis: Shown as single-edges.

Fig. 1. A partial human metabolic network in liver.

• Fatty Acid Synthesis is inhibited due to: (1) increased concentration of fatty
acids, and (2) elevated glucagon/insulin ratio in fasting state (shown in Fig. 1
as the inhibitor on the double-arrow edge for Fatty Acid Synthesis).

• In Glycolysis, the regulated enzymes, i.e. PFK 1 (in Fig. 1, Fructose 1, 6-
bis-P → Fructose 6-P), pyruvate kinase (in Fig. 1, Phosphoenolpyruvate →
Pyruvate), and glucokinase (in Fig. 1, Glucose → Glucose 6-P)) are inhibited
by elevated ATP, alanine, and glucagon/insulin ratio.

• Pyruvate dehydrogenase (PDH; in Fig. 1, Pyruvate → Acetyl CoA) is inhib-
ited by increased NADH, acetyl CoA, and ATP production.
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In Fig. 1, we visually specify the running metabolic (sub)network used in this
paper, with most of the examples directly employing the network of Fig. 1. More-
over, we reduce the visual complexity of Fig. 1 as follows.

• For each enzymatic reaction of Fig. 1, neither the name of the enzyme, nor its
EC (enzyme commission) number is shown.

• For each reaction of Fig. 1, none of the co-factors, regulators, activators, and
inhibitors is shown, unless specifically used in an example.

• For each of the three fully drawn metabolic pathways (i.e. Glycolysis, Gluconeo-
genesis, and the TCA cycle), pathway boundaries are not explicitly specified.

However, in the rest of the paper, whenever we refer to an enzyme, we explicitly
specify the enzyme’s position in Fig. 1 via the edge from its visually specified
substrate molecule to its visually specified product molecule.

1.2. Assumptions for MQL environment

We make the following assumptions about the MQL query processing environ-
ment/model.

• A complete metabolic network is pre-captured and available in a metabolic
network database.

• The metabolic network database captures tissue-level compartmentalization; that
is, it is a multi-tissue (i.e. not a single cell) and a multi-compartment (such as
cytosol and mitochondrion) environment; and

• The organism (represented by its metabolic network database) is queried in a
quasi-steady state; that is, at query time, the rate of formation of every metabolite
is equal to its rate of degradation, i.e. all concentrations remain constant in time.

1.3. Contributions of this paper

Contributions of this paper are

• To computationally capture and model mammalian metabolic networks by
employing the underlying biochemistry principles,

• Design of the metabolism query templates MQLAIP and MQLPFC which allow
in-depth biochemical queries,

• Development of query processing strategies for MQLAIP and MQLPFC queries.

1.4. Overview of related work and coverage

With the goal of creating querying environment for metabolism, in the literature,
researchers present a number of specifications and tools in mainly three categories.
The first category of works includes biological simulation and modeling systems (e.g.
BioSim,2 GenSim,3), the second category consists of query languages (e.g. PQL,4

bcnQL,5) on biochemical networks, and the third category includes well-known
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metabolic data sources (e.g. KEGG,6 MetaCyc,7 Reactome,8 PathCase9) with
advanced querying interfaces running on biochemical network databases. Such sys-
tems, query languages, and metabolic data sources essentially view the metabolism
as a graph, and mostly focus on querying (i) structural properties of metabolic
networks (e.g. paths, neighborhoods, cycles, etc.), and (ii) entity relationships (e.g.
inhibitors of a reaction in a particular pathway). However, these efforts do not cap-
ture detailed biochemical working principles of a metabolism, and interrelationships
between pathways under different physiological and dietary states. We compare the
above-listed work briefly in Sec. 6.

Our proposed MQL approach, with its goal of identifying active/inactive paths
in a metabolic network, can be viewed as being in the general category of metabolic
analysis techniques which include metabolic control analysis (MCA)10–13 flux bal-
ance analysis (FBA),14–16 metabolic flux analysis,17 and metabolic pathway analysis
(i.e. elementary flux mode analysis and extreme pathways).15,18–20 In Sec. 6.1, we
summarize and compare these techniques with MQL.

The rest of the paper is organized as follows. In Sec. 2, we characterize the essen-
tial principles of the mammalian metabolism, and accordingly formulate MQL’s
query processing rules. Section 3 discusses MQL’s data and graph representation
models in association with the corresponding biochemical principles. In Sec. 4, we
specify the syntax for MQLAIP and MQLPFC queries. Section 5 organizes the
query processing rules of Section into a query processing framework for MQLAIP

and MQLPFC queries. In Sec. 6, we discuss and compare the related studies, and
Sec. 7 concludes.

2. Biochemistry-Based Query Processing Principles

The overall mammalian metabolism consists of individual metabolic pathways and
processes. Adaptation of the metabolism to changes in physiological conditions as
well as the dietary state of the body postulate an efficient management of variety
of pathways with the same grand vision, e.g. energy production/storage, handling
stress, and so on. In order to achieve a harmonious action of different pathways in
an efficient way, the human metabolism employs a variety of control mechanisms
that determine rates of individual pathways. Some of these control mechanisms
operate at a very coarse level, while some others perform “finer tuning” at different
critical points in the metabolic network.

The processing of an MQL query such as the one in Sec. 1.1 requires the use of
underlying metabolic biochemistry principles that control the functioning of path-
ways, which we characterize next. This section lists a number of metabolic biochem-
istry principles, and converts them into the corresponding query processing rules
(QPRs). We think that the characterization in this section is only the first step;
and that the characterization/use of more and more refined/in-depth biochemistry
principles will result in the future with more accurate and realistic MQL query
results.



April 6, 2010 14:26 WSPC/185-JBCB S0219720010004604

Querying Metabolism Under Different Physiological Constraints 253

In what follows, we pair a biochemistry principle i (sometimes with multi-
ple components a-d) with its corresponding MQL query processing rule QPR
i. Section 2.1 characterizes the substrate availability notion for a reaction, and
translates it into QPR 1 involving product availability. In Sec. 2.2, we discuss
three different types of enzyme regulations, namely, allosteric regulation, cova-
lent modifications, and enzyme synthesis and degradation, and derive the corre-
sponding very basic query processing rule QPR 2. Section 2.3 introduces the
notion of regulator precedence (which is textbook knowledge for biochemists),
and the corresponding QPR 3. In Sec. 2.4, we discuss pathway level regulation,
namely, the notions of regulatory, rate-controlling, and committed steps of path-
ways, and present the corresponding QPRs 4 − 6. Section 2.5 introduces the
notion of a metabolite pool (or pools) for a metabolite in a biological compart-
ment, presents five biochemistry principles about the effects of reaction rates on
pool sizes, the notion of pool hierarchies, etc, and translates these rules into QPRs
7–11. In Sec. 2.6, we discuss energy currency metabolites in a cell, and model-
ing energy pool of a cell hierarchically, and derive the corresponding query pro-
cessing rule QPR 12 about determining the energy state of a cell. Section 2.7
specifies four principles for characterizing the functional specialization of biolog-
ical compartments (namely, enzyme specialization/ isoforms, transport processes,
and inputs/outputs of compartments), and derives four query processing rules QPR
13–16. In Sec. 2.8, we characterize metabolite availability/accumulation at steady
state via two principles, and derive the corresponding query processing rules QPR
17–18. Section 2.9 introduces the notion of a signature for dietary states and phys-
iological conditions, and translates it into QPR 19. Finally, Sec. 2.10 discusses
the notion of product inhibition (that occurs when a product metabolite pool size
increases substantially and slows down the reaction rate) and the corresponding
QPR 20.

2.1. Substrate availability

Principle 1. The availability of substrates for a particular pathway is a major driv-
ing factor that controls the rate of metabolic processes and biochemical reactions
(Ref. 21, p. 863).

The liver provides many examples illustrating such substrate-driven control.
As an example, concentration of fatty acids entering liver from blood determines
the rate of ketone body synthesis. As another example, availability of substrates for
glucose synthesis is a major control factor that increases the rate of gluconeogenesis.
As yet another example, increased ammonia production leads to a higher rate of
urea production through the urea cycle. More specifically, dietary amino acids are
absorbed by the gut, and released as citruline into the portal vein. Citruline is a
precursor of ornithine in liver, where increased ornithine concentration causes a
higher rate of urea cycle function.
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In processing MQL queries, principle 1 is employed using the following rule:

Query Processing Rule 1: If a substrate concentration increases (decreases), in
the absence of other factors, the product concentration also increases (decreases).

Cofactors are small metabolites that bind enzymes and are necessary for bio-
chemical reactions to occur (Ref. 21, p. 378). They may be modified during a
reaction, or can go unmodified. A cofactor in metabolite is converted to a cofac-
tor out metabolite during a reaction. Cofactor-in and cofactor-out metabolites are
considered as specialized substrates and products, respectively.

2.2. Regulation of key enzymes

2.2.1. Allosteric regulation

Principle 2(a). Many enzymes have a distinct regulation site, called allosteric site
(which is different than the active site of the enzyme) that provides a base for the
binding of effector molecules, called allosteric regulators. Allosteric regulation may
involve both inhibition (i.e. a decrease in the rate of pathway) and activation (i.e.
an increase in the rate of a pathway).

Through allosteric regulation, the metabolism gains the capability for finer tun-
ing than just substrate availability, and, as a result, many futile cycles, which would
otherwise waste resources, are prevented in different metabolic processes. (Futile
cycle is defined qualitatively as “two opposing sets of enzyme-catalyzed reactions
that result in release of energy as heat by the net hydrolysis of ATP” (Ref. 21,
p. 1142). We give an example.

Example 2.1: Fructose 2, 6-bisphosphate (not shown in Fig. 1) allosterically acti-
vates the enzyme phosphofructokinase-1 (PFK1; in Fig. 1, Fructose 1, 6-bis-P →
Fructose 6-P), and at the same time, allosterically inhibits the enzyme fructose
1, 6-bisphosphatase (in Fig. 1, Fructose 6-P → Fructose 1, 6-bis-P). These two
parallel regulations stimulate glycolysis while inhibiting gluconeogenesis, and this
helps prevent a futile cycle between fructose 6-phosphate and fructose 1, 6 bis-
phosphate. In summary, allosteric regulators of reactions can be used to infer the
activation/inhibition of reactions.

2.2.2. Covalent modifications

Covalent modification establishes a bridge between signaling pathways and
metabolic pathways through phosphorylation of enzymes at the end of cascades
of signaling steps which are often initiated by extra-cellular agents, such as
hormones.

Principle 2(b). Through covalent modification, enzymes are phosphorylated
or dephosphorylated by enzyme-specific kinases and phosphatases, respectively.
Depending on the enzyme, either its phosphorylated or dephosphorylated form is
active and available to catalyze the corresponding reaction.
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Example 2.2. Pyruvate dehydrogenase (PDH; in Fig. 1, Pyruvate → Acetyl CoA) is
inactivated when it is phosphorylated by protein kinase. Protein kinase is activated
by Acetyl CoA, NADH, and ATP, while it is inhibited by Pyruvate. Hence, Acetyl
CoA, NADH, and ATP act as inhibitors of PDH, and Pyruvate acts as activator of
PDH.

2.2.3. Regulation through enzyme synthesis/degradation

Another regulation mechanism for a reaction is the changes in the concentration of
its catalyzing enzyme. The Vmax notion in the Michaelis-Menten equation (Ref. 21,
p. 388) represents the maximum speed that a reaction can achieve given that there
is unlimited amount of substrate(s). At the maximum speed, reaction rate levels
off, since all available enzymes are saturated with the available substrate(s). Hence,
we have the following principles.

Principle 2(c). Increase or decrease in the synthesis or degradation rates of an
enzyme may change the flux rate going through that reaction.

Principle 2(d). Depending on the mechanism regulating the enzyme activity, the
time required to observe a change in enzyme activity changes. More specifically,
allosteric effects take place immediately; covalent modification may require minutes;
and regulation through gene expression may require hours to days (Ref. 22, p. 64).
(In either case, MQL assumes a stable steady state environment, after all effects
have taken place).

Query Processing Rule 2(a): Capture in the database the type of mechanism
for each regulator. In the case where multiple regulators with different mechanisms
are in effect, consider the dominant regulator as controlling the regulation.

Query Processing Rule 2(b): If an activator (of any type) increases (decreases),
in the absence of other factors, the reaction rate increases (decreases). And, if an
inhibitor (of any type) increases (decreases), the reaction rate decreases (increases).

2.3. Regulator precedence

Key enzymes of the metabolism often have multiple (i.e. more than one) activators
and inhibitors. And, it is not rare that an enzyme may simultaneously be acted upon
by two regulators with conflicting effects (i.e. simultaneous actions of an inhibitor
and an activator). In such cases, usually one of the regulators takes precedence
over the other(s), and the final effect (i.e. inhibition or activation) on the working
mechanism of the enzyme is shaped by that regulator. We give an example.

Example 2.3: Consider the regulator precedence that takes place during the fast-
ing state of the body where both beta-oxidation (shown collapsed in Fig. 1) and
gluconeogenesis pathways (shown in full in Fig. 1) have increased flux rates in liver.
A key enzyme, control of which diverts pyruvate into gluconeogenesis, rather than
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into the TCA cycle, is pyruvate dehydrogenase (PDH ; in Fig. 1, Pyruvate → Acetyl
CoA) of mitochondrion. Pyruvate is a homotropic allosteric regulator (i.e. it is both
an allosteric activator and a substrate) of PDH. And Acetyl-CoA is an inhibitor of
PDH. During the fasting state, concentrations of both Pyruvate and Acetyl CoA
increase. Therefore, PDH is under the simultaneous allosteric effect of Pyruvate
and Acetyl-CoA. However, Acetyl-CoA takes the precedence to determine the final
effect on PDH, and the activity of PDH is inhibited under this state.

Principle 3. An enzyme may have multiple regulators which control the enzyme
rate with varying degrees of effect.

Query Processing Rule 3: In cases where multiple regulators with conflicting
regulatory effects (activation or inhibition) on an enzyme are in place (with this
regulation information precaptured and available in the database at query time),
employ the regulator with the strongest effect (highest precedence) on the enzyme,
and ignore the other regulators. If no precedence value is available in the database,
apply Query Processing Rule 2(a).

2.4. Pathway-level regulation

Most of the time, only a subset of reactions in a pathway is subject to regulation
(i.e. regulatory steps), and the others simply follow the regulated reactions.

Principle 4. In order for a pathway to have increased flux (or be activated), none
of its regulatory points should be inhibited.

Example 2.4: In Fig. 1, the TCA cycle is marked for decreased rate due to the
inhibition of its regulated reactions (also called regulatory points) by NADH.

Query Processing Rule 4: Do not mark a pathway completely active if at least
one of its regulatory steps (which are pre-captured and available in the database)
is inhibited.

The regulated reactions in a pathway may be further classified as rate-limiting
and committed steps.

Principle 5. If a given enzymatic reaction in a pathway forms a rate-limiting step,
increasing the concentration of the enzyme of this reaction increases the overall rate
of the pathway. Similarly, decreasing the concentration of the enzyme of the rate
limiting step decreases the overall rate of the pathway.

As an example, the rate limiting step of Glycolysis is phoshofructokinase 1
(PFK 1). A pathway rarely has more than one rate limiting step. Moreover, a rate-
limiting step is usually irreversible and the slowest step in a given pathway. Thus,
inhibition of the rate-limiting step usually leads to the accumulation of precursors
of the pathway.

Query Processing Rule 5: Set upper-limit for a pathway’s activity level as the
activity level of its slowest rate-limiting step (if there is more than one).
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Principle 6. Once the committed step takes place, other reactions in the pathway
follow this reaction until the end-product is produced, provided that none of the
other regulated processes are blocked or inhibited.

A committed step of a pathway is usually one of the early irreversible reactions
in the pathway. As an example, in glycolysis, the committed step is the same as
the rate-limiting step, PFK 1.

Query Processing Rule 6: If the committed step of a pathway is blocked (i.e.
inactive), then mark the pathway as inactive.

2.5. Metabolite pools

Due to the integrative and highly connected nature of the human metabolic network,
key metabolites usually have multiple producer and consumer metabolic processes.

Principle 7(a). Conceptually, each metabolite m is considered to have a pool of
its own that feeds the consumer processes of m, and also serves as a sink collecting
m from the producer processes of m.

Principle 7(b). In a particular biological compartment, the total amount of a
metabolite m in terms of molar mass (i.e. the mass of one mole of a metabolite
counts as size 1) is often expressed as its pool size.

Query Processing Rule 7: Capture a metabolite as a collection of pools with a
default pool identified in each compartment.

Principle 8. Due to biological compartmentalization (Ref. 21, p. 405) as well as
different functional roles,23 a metabolite may have more than one pool.

Query Processing Rule 8(a). Associate each reaction with particular pools of
its substrates, products, and regulators.

Example 2.5: Malate is located in both cytosol and mitochondrion. Hence, it has
separate pools for each biological compartment that it resides. And, Malonyl CoA
is reported23 to possibly have two pools in cytosol due to distinct functional roles
as substrate and regulator.

Query Processing Rule 8(b). Connect two reactions, r1 and r2 to each other in
the metabolic network if (i) r1 and r2 has at least one shared metabolite m, and
(ii) r1 and r2 are associated with the same pool of m.

Principle 9. The relative contribution of each metabolic reaction into a specific
metabolite pool may differ from one metabolic reaction to another. Similarly, the
relative consumption by each metabolic reaction that is fed from the same pool
may be distinct.

Example 2.6: In the fasting state, in liver mitochondrion, the Acetyl CoA pool is
minimally consumed by TCA Cycle, and the majority of it is used by Ketone Body
Synthesis (Ref. 21, p. 856).
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Query Processing Rule 9: While the change in a particular metabolite pool size
is computed, take into consideration rates of producers and consumers. If rates are
available only in terms of qualitative terms (e.g. major, minor, etc.), then map such
qualitative terms to consistent quantitative values — only for comparison purposes
(e.g. major = 90, minor = 10).

Principle 10. The total amount of a particular metabolite m in a biological com-
partment c at any time is stated as the combined size of metabolic pools for m in c.
Different pools of the same metabolite may have different sizes. Hence, proportional
pool sizes should also be accommodated in a computational model.

Example 2.7: In the fasting state, protein turnover in the muscle increases, and
aminoacids (AA) are transported from muscle to liver through blood to be used
as substrates for Gluconeogenesis. In blood, each metabolite can be considered to
have its own pool. Due to conversion of many aminoacids to alanine and glutamate
in liver, the amounts (pool sizes) of different aminoacids released from muscle into
blood are not the same (e.g. alanine and glutamine accounts for 80% of all AAs
in the blood). Whenever total AA concentration in blood is in question, total pool
size of AAs is considered by summing up the individual AA pools.

Query Processing Rule 10: While the change in the overall concentration of a
metabolite m in a given compartment is computed, take into consideration relative
sizes of each pool of m. That is, let p1, p2, . . . , p3 be the pools of a metabolite m with
sizes s1, s2, . . . , s3, respectively, for a given compartment. Then, if the total size of
all pools of m which are marked for increase (decrease) is larger than the total size
of all pools of m which are marked for decrease (increase), then we conclude that
the overall concentration change of m increases (decreases).

Principle 11. (metabolite pool hierarchy) Higher level metabolic reasoning involves
the creation of conceptual metabolite pool hierarchies.

Example 2.8: The total available free aminoacid (AA) content is considered as the
sum of the pool sizes of each individual amino acid, such as the alanine pool, the
glutamate pool, etc. Hence, the conceptual AA pool is a parent pool of those indi-
vidual amino acid pools. The overall AA pool size affects the direction of reversible
aminotransferase reactions (Ref. 21, p. 746).

Query Processing Rule 11: (Computing a metabolite concentration change in
the presence of a metabolite pool hierarchy): If pools of a metabolite m are organized
in a hierarchical manner, then, while computing the overall concentration change
of m, take into consideration only the leaf level pools of m in its pool hierarchy.

2.6. Energy state of cells

The metabolism makes an effort to maintain energy homeostasis within cells. Such
a maintenance effort involves adaptive regulation of energy producing (e.g. the TCA
Cycle) and storing processes (e.g. Fatty Acid Synthesis).
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Example 2.9: In low energy state, the rates of AA degradation, Lipolysis, Fatty
Acid Oxidation, Glycogenolysis, and the TCA Cycle increase. On the other hand,
in high energy state, the rates of such processes decrease, and the rates of opposite
processes such as Fatty Acid Synthesis and Glycogenesis increase.

Definition. (Energy Currency Metabolite): Certain metabolites with high energy
electrons or high energy phosphate bonds serve as carriers of energy in the body.
Such molecules are considered as “energy currency” of cells. That is, the energy
state of the cell can be quantified by considering the amounts of such high-energy
molecules. Most common energy currency molecules are ATP, NADH, NADPH,
FADH 2, and GTP (and their oxidized or dephosphorylated forms, i.e. AMP, ADP,

NAD+, NADP+, FAD, and GDP).

Principle 12. Energy pool of a cell can be modeled hierarchically where the overall
energy pool of the cell is the parent of all pools of energy-currency molecules.

Query Processing Rule 12: Determine the energy state of the metabolism based
on the overall change in individual ratios of energy currency metabolites to their
oxidized or dephosphorylated peers, e.g. NADH

NAD+ , ATP
AMP , and so on. For a ratio to

increase, concentration of nominator metabolite should increase while concentration
of denominator metabolite decreases. And, for a ratio to decrease, concentration of
nominator should decrease while concentration of denominator increases. In cases
where both denominator and nominator change in the same direction, no assessment
is made.

2.7. Functional specialization of biological compartments

Principle 13. Enzymes in pathways of the human metabolism are highly special-
ized in terms of biological compartments (e.g. organs, organelles, membranes, etc.)
that they reside in.

Example 2.10: Urea cycle takes place only in the liver. And, ketone bodies are
produced by the liver for the peripheral tissues, but cannot be used by the liver
itself as an energy source. Moreover, both muscle and liver contain the Glycoly-
sis pathways, but the muscle version lacks the enzyme (Glucose 6-Phosphatase)
that converts glucose 6-phosphate to glucose, thus, preventing muscle from directly
contributing to the blood glucose level.

Query Processing Rule 13: Identify enzymes by their biological compartments,
and consider their isoforms in different compartments as distinct entities.

Principle 14. Each biological compartment produces and/or consumes a certain
set of metabolites.

Query Processing Rule 14: Associate each compartment with particular pools
of metabolites as its input and output. And, connect two compartments in the
metabolic network if they have at least one shared input and/or output metabolite
pool.
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Principle 15. Metabolites are transported into organs from blood or from organs
into blood through (i) complex transport processes that are regulated by complex
enzyme/hormone mechanisms, (ii) simple transport processes in which metabo-
lites follow the concentration gradient, that is, they flow from high concentration
compartment to low concentration compartment.

Example 2.11: Glucose uptake into muscle and adipose tissue is made possible
through an active transport mechanism mediated by insulin with transported pro-
teins GLUT 4. However, glucose uptake by liver is not regulated by insulin.

Query Processing Rule 15: Associate each input and/or output metabolite of a
compartment with a transport process. Consider a transport process as a metabolic
reaction with regulator(s) (if any) (precaptured and modeled in the database).
Connect a transport process and an enzymatic metabolic reaction if they share at
least one metabolite pool (i.e. as their substrate and/or product).

Principle 16. Biological compartments are often organized in a hierarchical man-
ner, where one compartment contains another compartment.

Example 2.12: Liver contains mitochondrion which in turn contains mitochondrial
matrix.

Query Processing Rule 16: Whenever a compartment is specified in a query,
automatically include all of its child compartments (if any) in the query. In terms of
visualization, consider blood to be the parent of all compartments (i.e. root in the
compartment hierarchy); but, during query processing, consider blood as a separate
compartment with no parent or child.

2.8. Metabolite availability vs. metabolite accumulation

The availability of a metabolite and its accumulation are often (mistakenly) con-
sidered to refer to the same concept. However, metabolically, they mean related,
but different things.

Principle 17. Availability of a metabolite m as a substrate to a metabolic process
p means that, as long as p is not inactivated by some other regulatory mechanisms,
p is supplied some amount of m to consume. On the other hand, in order for a
metabolite m to accumulate in a particular pool of its own, the rate of m’s overall
consumption should be less than the rate of its overall production. In other words, at
steady state, accumulation of a metabolite implies its availability, but its availability
does not necessarily imply its accumulation.

Example 2.13: In the fed state, glucose, through Glycolysis, is catabolized to Acetyl
CoA, which is converted tofatty acids or oxidized in the TCA Cycle. Although
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Acetyl CoA is available to these metabolic processes (i.e. Fatty Acid Synthesis and
the TCA Cycle), it does not accumulate, as the combined consumption rate by Fatty
Acid Synthesis and the TCA Cycle is the same as (or larger than) its production
by Glycolysis. On the other hand, in the fasting state, Acetyl CoA is produced by
Beta Oxidation, and consumed by the TCA Cycle and Ketone Body Synthesis. In
this case, accumulation of Acetyl CoA occurs, since its production rate by Beta
Oxidation is much higher than its combined consumption rate by the TCA Cycle
and Ketone Body Synthesis.

Query Processing Rule 17(a). (metabolite accumulation and availability): Given
a metabolite pool m, let (i) Pm = {(p1, s1), (p2, s2), . . . , (pi, si)} be the activated
producer set of m, where each pair (pi, si) refers to an activated producer pi of m

and its rate si, (ii) Cm = {(c1, r1), (c2, r2), . . . , (cj , rj)} be the activated consumer
set of m, where (cj , rj) refers to an activated consumer cj of m and its rate rj , (iii)
(s1 + s2 + · · ·+ si) be the ProductionRate(m) of m, and (iv) (c1 + c2 + · · ·+ cj) be
the ConsumptionRate(m) of m. Then, mark m as

• “severely accumulated” if ProductionRate(m) > 0 and ConsumptionRate(m) = 0
(i.e. all consumers are inactive).

• “accumulated” if ProductionRate(m) > ConsumptionRate(m).
• “available” if ProductionRate(m) ∼= ConsumptionRate(m) and Pm �= ∅.
• “unavailable” if ProductionRate(m) = 0.

To be used during the query processing, we also assign an integer id for each of the
above qualifiers as follows: 0: unavailable, 1: available, 2: accumulated, 3: severely
accumulated.

Query Processing Rule 17(b). (Metabolite accumulation and availability in
the presence of metabolite pool hierarchy): Given a metabolite pool m with child
metabolite pool set C in a hierarchical metabolite pool organization, mark m as

• “severely accumulated” if there is at least one metabolite pool p ∈ C, which is
marked as “severely accumulated,” else

• “accumulated” if there is at least one metabolite pool p ∈ C, which is marked as
“accumulated,” else

• “available” if there is at least one metabolite pool p ∈ C, which is marked as
“available,” else

• “unavailable” in all other cases.

(We consider the above conditions in the given order, and stop considering the
remaining conditions whenever a matching condition is identified)

Principle 18. Let m be a metabolite pool involved in a set R of reactions as
a substrate and/or regulator. For some reactions in R, availability of m may be
sufficient for them to be active through substrate availability (provided that there
are no other inhibiting mechanisms) or experience the regulating effect (i.e. inhibi-
tion/activation) of m, in those cases where m is a regulator. However, some other
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reactions may require the accumulation of m (at least, at moderate levels) to assume
substrate availability for activation or to experience the regulating effect of m, in
cases m is a regulator.

Example 2.14: Acetyl CoA is an allosteric activator of the first step (also the
committed step) in Gluconeogenesis, which is catalyzed by pyruvate carboxylase.
In fed state, Acetyl CoA is produced by Glycolysis (hence, available), but it does
not accumulate (please see Example 2.13). Therefore, pyruvate carboxylase is not
activated, which leads to the inactivation of Gluconeogenesis pathway.

Query Processing Rule 18: As part of association between a metabolite pool
and a reaction either as a substrate or product, precapture the “trigger” condition
(i.e. either accumulation or availability) that is necessary for the metabolite to
participate in the reaction. If such information is not available, set the trigger
condition by default as “available” for substrates, and “accumulation” for regulators
based on the patterns observed in well-characterized metabolic scenarios (e.g. citrate
as a regulator for Glycolysis and Fatty Acid Synthesis (Ref. 21, p. 864)). During
query processing, check these trigger conditions to make sure that they are satisfied.

2.9. Signatures for dietary states and physiological conditions

Principle 19. In different physiological and dietary states, concentration and/or
production rate of certain molecules increase or decrease. Hence, such changes can
be considered as signatures that identify the corresponding physiological state.

Example 2.15: In the fasting state, the body uses fatty acids that are mobilized
from adipose tissue as the primary energy source due to lack of sufficient glucose.
Glycerol is also released from adipose as the other product of increased lypolysis
activity. Furthermore, ketone bodies are produced intensively from fatty acids by
the liver. At the hormonal level, body’s primary response consists of lowering the
insulin level and increasing glucagon levels. Based on this description, the fasting
state can be represented as the following set S of concentration changes:

S = {insulin ↓, glucagon ↑, glucose ↓, fatty acids ↑, ketone bodies ↑, glycerol ↑}.

Apart from concentration changes, the rate of certain metabolic pathways may sig-
nificantly change leading to accumulation or availability pattern changes of certain
metabolites.

Example 2.16: In exercise state, the rate of Glycolysis in muscle cells increases
significantly to account for increased demand for energy. However, the TCA Cycle
cannot keep up with this increase in the rate of Glycolysis, and pyruvate starts
accumulating, and is channeled to lactate. Hence, the signature of the exercise
state involves an increase in the contributing rate of Glycolysis into the pyruvate
pool in cytosol of muscle cells.
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Query Processing Rule 19: Whenever a user query involves a built-in dietary
state or physiological condition predicate, (i) map these predicates to their corre-
sponding signatures based on their definitions, (ii) consider concentration changes
as user-provided concentration change input, and (iii) override pool contribution/
consumption rates in the database with those rate changes included in a signature.

2.10. Product inhibition

Due to similarities in the way they bind to enzymes, substrates are in competition
with products to bind to their enzymes. As the concentration of products increases,
this competition slows down the rate of enzymes binding the substrates. Hence, the
reaction rate decreases. Eventually, when the product accumulation reaches to high
levels, the corresponding reaction is inhibited dramatically.

Principle 20. As the product concentration in the environment increases, the
reaction rate slows down.

Example 2.17. In the fasting state, due to the slowdown of the TCA Cycle and
inhibition of fatty acid synthesis in liver, citrate accumulates, which in turn inhibits
and slows down the primary reaction that produces it (i.e. citrate synthase). And,
the inhibition of citrate synthase leads to the accumulation of its driving substrate,
Acetyl CoA.

In this work, we take a conservative approach on product inhibition by applying
it when a product has no active consumer, i.e. “severely accumulated.”

Query Processing Rule 20: Whenever a metabolite m is marked as “severely
accumulated,” mark those reactions that produce m as “inactive.”

3. Data and Graph Representation Model for Metabolic Network

3.1. Data model

We adopt an object oriented data model to represent the mammalian metabolism.
Objects are structured data types which contain basic types (e.g. string, int, etc.) or
other structured data types (i.e. objects) as their fields. We employ the metabolic
principles that are summarized in Sec. 2 as the main motivation, and as a guide in
our modeling effort. Figure 2 shows the object definitions and their fields for the
essential constituents of the metabolism, where id fields are omitted for brevity. In
our data model, metabolism, at the highest level, consists of a set of pathways. Each
pathway contains a collection of reactions, a set of substrates, a set of products,
and a set of cofactors. To satisfy principle 1, we explicitly specify pathway inputs
to prepare the infrastructure required for implementing the corresponding query
processing rule in the query processing stage. Optionally, pathways may have com-
mitted and rate-limiting steps (if known). Moreover, to satisfy principles 5 and 6, we
model committed and rate-limiting steps. Input and output molecules of a pathway
are associated with a particular pool of a metabolite through MetabolitePoolLink
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objects, which are associated with a particular MetabolitePool and have a rate field
specifying the contribution (or consumption) rate to the overall pool through that
link.

A pool of a metabolite has a location field, and optional size and parent fields,
where the parent field makes hierarchical organization of pools possible for a partic-
ular metabolite. Such an organization allows for the creation of conceptual group-
ings of metabolite pools. To satisfy Principle 7(a) and the corresponding query pro-
cessing rule, we have a MetabolitePool object for each metabolite. For Principle 7(b),
we have a size field for each MetabolitePool object. For Principle 8, we capture the
compartment information for each pool, and allow a metabolite to have more than
one pool. For Principles 9 and 17, a rate field in each MetabolitePoolLink object
is introduced. For Principle 10, a size field and a reference to its owner metabolite
is created in each MetabolitePool. For Principle 11, an optional parent field is cre-
ated for a hierarchical organization. For Principle 18 and its corresponding query
processing rule, we include triggerCondition field in each MetabolitePoolLink.

Metabolite object has name and type fields, where type may be “basic molecule,”
“hormone,” “protein,” etc. Moreover, each metabolite stores its default pools per
biological compartment. This information is required during query processing to
associate a metabolite referenced in a query to one the specific pools of its own,
if it has multiple pools in a biological compartment. Hormones have a single pool
in blood, but they influence a large number of tissues through cascading signaling
steps.

EnergyCurrencyMetabolite directly extends from Metabolite, and represents
those metabolites which are considered to be energy carriers in a cell. An addi-
tional peer field links an energy metabolite to its reduced (or oxidized) peer, and
the chargeStatus field describes whether a given metabolite is a highEnergy or a
lowEnergy metabolite. For Principle 12, overall sizes of EnergyCurrencyMetabolite
pools and their peers can be used to reason about the energy state of a cell.

Each reaction has a collection of substrates, products, cofactors, enzymes, and
regulators, all of which (except enzymes) are metabolite pool instances. For Princi-
ple 4, we can obtain the reactions of a pathway, and decide which ones are regulated
(through regulator field). Since some biochemical reactions are reversible, and in a
particular pathway they usually work in one direction, in each pathway they par-
ticipate, the direction information is also stored. Enzymes can reside in multiple
compartments (e.g. isozymes). Hence, each reaction is associated with a specific
instance of a reaction in a particular compartment. The location information for
a reaction is implied by the location of its enzymes. For Principle 13, we asso-
ciate each enzyme with a particular compartment. Compartments have name, and
optional size and parent fields. Similar to MetabolitePools, parent field allows for
the definition of a compartment hierarchy (e.g. organ → tissue → organelle → inner
membrane). In our data model, an organelle in tissue A is different than the same
type of organelle in tissue B (that is, mitochondrion in liver vs. mitochondrion in
red blood cells), since the same type of organelles in different tissues may have
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different metabolic functions and/or enzyme coverage. For Principle 16, we have
a parent field in Compartment object for a possible hierarchical organization. In
addition, each compartment has a set of transportProcesses that carry metabolites
in and out of the compartment. A transport process is modeled as an instance of a
regular reaction, where compartment refers to the one that a particular transport
process belongs to, and substrates and products refer to different pools of the same
metabolite. For Principle 14, we can figure out input and output metabolites of
a compartment based on substrates/products of its transport processes. And, for
Principle 15, we can find out if a transport process is complex or simple by checking
whether it has regulators or not.

A regulator involves a specific pool of a metabolite and an optional precedence
value which is required when multiple regulators with conflicting effects act simul-
taneously on the rate of the same reaction (the one with the highest precedence
value determines the final effect on the rate of a reaction). Besides, a regulator may
optionally be defined based on a ratio of metabolite pools (e.g. glucagon/insulin in
Fig. 1). Regulator also involves a triggerCondition field that differentiates between
reactions requiring accumulations of metabolites and those for which availability is
sufficient (Principles 17 & 18). Finally, regulators have a type field that captures the
mechanism (i.e. allosteric, covalent, expression control) of regulation as described by
Principles 2(a)-2(d). We model all enzyme regulation mechanisms through Regula-
tor objects. For Principle 3, we have an optional precedence field for each Regulator
object.

A DietaryState object is the representation of a dietary state (e.g. fasting)
and represented by a set of metabolite concentration changes that characterize
the dietary state, which collectively represent the “signature” of a dietary state.

A ConcentrationChange refers to a specific pool of a particular metabolite and
the direction of its concentration change (i.e. increase or decrease). As an example,
fasting state can be represented by the following signature involving concentration
change objects: {insulin ↓, glucagon ↑, glucose ↓, fatty acids ↑, ketone bodies ↑}. A
PhysiologicalCondition stands for a condition or a disease (e.g. diabetes), and it
directly extends from the DietaryState object, as we reuse the same representa-
tion model. In addition, PhysiologicalCondition allows for the specification of a set
of changes on the shares of different reactions in metabolite pools. By allowing
rate changes, we allow representation of physiological conditions where the rate of
a metabolic process can increase/decrease significantly, leading to changes in its
contribution or consumption rates for a particular metabolic pool. The modified
behavior may affect the accumulation or availability of different metabolites.

3.2. Graph representation model

In our graph representation model, compartments (e.g. liver in Fig. 1) are modeled
as large “super-nodes” which contain subnetworks of the overall metabolism, as well
as other compartments (e.g. mitochondrion in liver in Fig. 1). In each subnetwork,
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nodes represent metabolite pools (e.g. Acetyl CoA in mitochondrion in Fig. 1).
Reactions are represented as hyper-edges, which connect multiple end-points (i.e.
substrates and products) (e.g. the reaction that converts oxalacetate and Acetyl
CoA to citrate in the TCA Cycle in Fig. 1). Regulation is represented by an edge
between a metabolite pool (i.e. a regulator) and a hyper-edge (i.e. a reaction) (e.g.
NADH as inhibitor for two different reactions in the TCA cycle in Fig. 1).

4. Query Specification

In this section, we discuss the formulations of two types of MQL queries, namely
MQLAIP and MQLPFC queries. For each query type, we present a descriptive
English statement, show the corresponding query template in MQL, and finally,
provide an example. We adopt an SQL-like24 database query specification scheme
for MQL queries where (i) the select clause of the query defines the output, (ii) the
from clause defines the objects/relations involved in the query, and (iii) the where
clause specifies additional predicates about compartment, dietary state, and so on.

4.1. Exploring activated/inactivated paths: MQLAIP queries

MQLAIP queries involve finding activated/inactivated paths in a particular sub-
network of the metabolism under specified dietary and/or physiological conditions,
and a given set of concentration changes of key metabolites.

Example 4.1: Please see Sec. 1.1 for a sample query of this type.
The generic query template is formulated as shown in Fig. 3 where the notation

is as follows.

• Names in italics refer to database values, e.g. cytosol or the TCA-cycle.
• Names in regular fonts (i.e. non-italic and non-bold-face) refer to variables, e.g.

P1, C1, etc.
• Bold-face words refer to keywords of the query language, e.g. select or paths or

dietaryState.

Fig. 3. MQLAIP query template.
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• The entry in between brackets, such as [a | b | c], enumerates exactly one possible
input value for the corresponding field. That is, [a | b | c] denotes exactly one of
(a or b or c).

• The entry in between curly brackets, such as {a|b|c}, enumerates exactly one
or zero possible input value for the corresponding field. That is, {a|b|c} denotes
exactly one or zero of (a or b or c).

• The parenthesis, ( ), has no particular meaning, and is used solely for grouping
purposes to disambiguate query formulations.

• “..” denotes zero or more repetitions.
• “*” stands for the quantifier “all” as in the standard SQL specification of database

query languages.25 In the select clause, using * as path specification computes
all activated/inactivated paths.

• If, for a particular field, nothing is specified as part of the query, then default
selections are assumed. Default selections are marked as “(default)” in the query
template.

• · notation in compartments is used to specify root-to-node path expressions
(as in the path expressions of object-oriented query languages25) in the com-
partment hierarchy.

• Visualizing pathways in full/collapsed forms or providing additional explanations
about inactivated and/or activated reactions are specified as optional separate
clauses. As an example, for visualization, default action is to display a pathway
in the query output in collapsed form, provided that no specification is included
in the query.

• a-set-of-conditions refers to a set of database physiological conditions, such as
diabetes.

• a-set-of-metabolite concentration-changes refers to a set of database metabolite
concentration changes, each in a specific compartment.

• a-subset-of-pathways refers to a subset of the pathway variables P1, P2, . . . , Pn
specified in the from clause.

• The concentration change direction symbols ↑ and ↓ are replaced with ∧ and
∨, respectively, since arrow symbols are not supported by simple query editors.
Similarly, horizontal arrow symbol, →, appearing in some query types is replaced
by its simple form ���.

Example 4.2: The following query represents the MQLAIP specification of the
query discussed in Sec. 1.1.

select * paths
from pathways Glycolysis P1 in liver.cytosol C1, Gluconeogenesis P2 in

liver.cytosol C1, TCA-Cycle P3 in liver.cytosol.mitochondrion
C2, Beta-Oxidation P4 in liver.cytosol.mitochondrion C2,
Ketone-Body-Synthesis P5 in liver.cytosol.mitochondrion C2,
Fatty-Acid-Synthesis P6 in liver.cytosol C1
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where dietaryState = fasting
and concentrationChanges = {lactate ∧ in blood, alanine ∧ in blood,
fatty acids ∧ in blood, glycerol ∧ in blood}

visualize P1, P2, P3 as full
explain blocked reactions in *

4.2. Exploring potential futile cycles: MQLP F C queries

This query type involves exploring/verifying potential futile cycles that are pre-
vented, and the control mechanisms that prevent them in a given metabolic setting,
such as the one discussed for MQLAIP queries. We give an example for MQLPFC

queries.

Example 4.3: Given the same metabolic setting as described in Example 1.2,
enumerate (i) potential futile cycles that are prevented by the metabolism, (ii) the
regulatory mechanisms that prevent them.

The generic query template for MQLPFC queries extends the template designed
for MQLAIP queries. The only required changes are in the “select” clause, as well as
in the optional visualization and explanation fields. In the “select” clause, “futile-
Cycle” phrase must be included for this type of queries, and the “regulation” phrase
is optional. The control mechanisms preventing potential futile cycles are included
in the output only if “regulation” phrase is included in the “select” clause. The
semantics of the other parts in the query template are the same as in MQLAIP

queries. Finally, the visualization part does not apply to this type of queries, and
the explanation part is the only result of this query. Hence, these two parts are not
included in the query template.

Fig. 4. MQLPFC query template.

Example 4.4: The MQL specification of the query in Example 4.3 is formulated
as follows.

select futileCycle, regulation
from pathways Glycolysis P1 in liver.cytosol C1, Gluconeogenesis P2 in

liver.cytosol C1, TCA-Cycle P3 in liver.cytosol.mitochondria C2,
Beta-Oxidation P4 in liver.cytosol.mitochondria C2,
Ketone-Body-Synthesis P5 in liver.cytosol.mitochondria C2,
Fatty-Acid-Synthesis P6 in liver.cytosol C1
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where dietaryState = fasting
and concentrationChanges = {lactate ∧ in blood, alanine ∧ in blood,
fatty acids ∧ in blood, glycerol ∧ in blood}

Given the metabolic network of Fig. 1, such a query returns the following result,
where superscript M and C stands for mitochondria and cytosol, respectively, and
m1 →∗∗ x∗∗ → m2 represents the steps (i.e. reactions) whose inhibition prevents
the corresponding futile cycle.

• Potential futile cycle 1: PyruvateM → OxalacetateM → ∗∗x∗∗ →
PhosphoenolpyruvateC → PyruvateC → PyruvateM is prevented because the
enzyme pyruvate kinase for PhosphoenolpyruvateC → PyruvateC is inhibited by
NADH, ATP, and Acetyl CoA.

• Potential futile cycle 2: Fructose 1, 6-bis-P → Fructose 6-P →**x**→ Fruc-
tose 1, 6-bis-P is prevented because the enzyme phoshofructokinase-1 (PFK 1)
for Fructose 6-P → Fructose 1, 6-bis-P is inhibited by ATP and increased
glucagon/insulin ratio.

• Potential futile cycle 3: Glucose-6-P → Glucose →**x**→ Glucose-6-P is pre-
vented because the enzyme glucokinase for Glucose → Glucose-6-P is inhibited
by increased glucagon/insulin ratio.

5. Query Processing

In this section, we discuss query processing of MQL. We employ the biochemical
principles of Sec. 2 and the data model of Sec. 3 for processing an MQL query
and constructing its result set. Related biochemistry principles/Query Processing
Rules (QPRs) are often referenced in parenthesis in italic font. Next, we discuss
processing each type of MQL query in the order presented in Sec. 4.

5.1. Preliminaries

Some parts of the query processing employs an auxiliary data structure, called
the dependency graph, to properly manage the regulation-wise inter-dependency
between different pathways.

5.1.1. Pathway/reaction dependency graph

Def’n (Dependency Graph): A dependency graph G(V, E) consists of a set V of
vertices and a set E of edges, where nodes in V correspond to distinct pathways
(or reactions), and a directed edge e(p1, p2) represents that pathway/reaction where
p1 (i.e. e.source) is dependent on pathway/reaction p2 (i.e. e.destination).

During query processing, dependence graphs are used for two purposes. First,
sometimes users may specify a query where not all the pathways that connect
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(a) (b)

Fig. 5. A Sample query sub-network and the associated dependency graph.

the specified blood metabolites are explicitly named in the query. In such cases,
the dependency graph can be used to identify those pathways that are needed to
make the query subnetwork a connected graph. In the algorithms of this section,
we assume that these “connecting” pathways are pre-identified, and added into the
metabolic network of the query (called the query network).

Secondly, the dependency graphs are used to identify groups of path-
ways/reactions with race conditions, and that may impose negative regulatory
effects on each other. We illustrate with a sample scenario.

Example 5.1. Consider the sample subnetwork of Fig. 5(a), where edges represent
pathways visualized in “collapsed” form, and with A, B, C, and D are the connect-
ing metabolites. Dotted edges denote inhibitor relationships between pathways. In
this network, depending on the evaluation of the race condition for the availability
of inhibitors, two different query results (in terms of active pathways) can be com-
puted: (i) Pathway2 may become activated before Pathway3, resulting in metabo-
lite C inhibiting Pathway3; thus, Pathway1 and Pathway2 become active; and
Pathway3 becomes inactive, or (ii) Pathway3 may become activated before Path-
way2, resulting in metabolite D inhibiting Pathway2; thus Pathway1 and Pathway3
become active; Pathway2 becomes inactive. The query processing algorithm of this
section marks both Pathway2 and Pathway3 as inactive, and places them (in stage
2, step 2.6 of the algorithm in Sec. 5.2) to a special pathway set, namely, P sink for
the user to observe. MQL detects the cycles in Fig. 5(a) via the dependency graph
of Fig. 5(b), and places Pathway2 and Pathway3 both into P sink.

5.1.2. Condition-based modeling

In a cycle of reactions, in the metabolic network, an input to a reaction is produced
by the last reaction completing the cycle. In other words, the first reaction cannot
be decided to be active (or inactive) unless the last reaction in the cycle is known to
be active, and vice versa. If we are to follow the query processing rule 1 which states
that all substrates should be available to a reaction in order for this reaction to be
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marked as active, none of the reactions in the cycle could be marked as active due
to their inter-dependence. Hence, QPR 1 needs to be “relaxed” with condition-based
rules. We give an example.

Example 5.2. Consider the following simple MQL query which involves only the
TCA Cycle of liver in its query subnetwork, and increase in Acetyl CoA (Acetyl
CoA↑) is provided as part of the query by the user. Note that this is a different
activation environment visualized in Fig. 1; for this example, we are only making
use of the network of Fig. 1, not the activation/inactivation info visualized there.

select * paths
from pathways TCA-Cycle P1 in liver. mitochondrion C1
where concentrationChanges = {acetyl CoA ∧ in liver. mitochondrion}
explain blocked reactions in *

From Fig. 1, the first reaction (i.e. citrate synthase; not shown in Fig. 1) in the
TCA Cycle requires Oxalacetate and Acetyl CoA as its input. For this reaction to be
active, all of its substrates should be available. Availability of Acetyl CoA is already
provided as part of the query. However, activation of the reaction that produces
Oxalacetate (hence the availability of Oxalacetate) is cyclically dependent upon the
current reaction, citrate synthase. And, once the cycle is completed, Oxalacetate
will be available to citrate synthase, as well. Obviously, QPR 1 will not allow us
to mark citrate synthase as active to start the cycle in the first place, and the
query result will not contain an active path, which is not correct. Nevertheless, if
we assume the conditional existence of Oxalacetate, and then apply QPR 1 to start
the cycle first, and, at the end, check if this condition is satisfied by a reaction
that produces Oxalacetate, we will be able to compute, as the result of the query,
that, in this small subnetwork in mitochondrion of liver, the TCA Cycle, the only
available pathway, is active based on the satisfaction of the query predicates.

The above example illustrates a specific case within a single pathway. However,
in general, such cyclic dependences may span multiple pathways, which may not be
immediately obvious. Next, we characterize the conditions for reactions (and thus
pathways) to be active.

Definition (Condition): A condition C is a pair 〈q, m〉, denoted as C〈q, m〉, of
metabolite pool status qualifier q (from QPR 17.1), and a metabolite pool m.

Example 5.3. Ketone Body Synthesis requires the accumulation of Acetyl
CoA to use it as a substrate. Then, the required condition can be stated as
C〈“accumulated,” Acetyl CoA〉.

Definition (Satisfaction of a Condition): A condition C〈q, m〉 is said to be satisfied
if m is marked with a qualifier q′ where either (a) 0 < q · id ≤ q′ · id or (b)
q · id = q ·′ id = 0 holds.
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Example 5.4. The condition C〈“accumulated,” Acetyl CoA〉 is said to be satisfied
when the corresponding pool of Acetyl CoA has the status “accumulated” (id: 2)
or “severely accumulated” (id: 3).

Definition (Negation of a Condition): Negation of a condition C〈q, m〉 is denoted
as ¬C〈q, m〉, and ¬C〈q, m〉 is satisfied, if m is marked with a qualifier q′ such that
either (a) q′ · id < q · id or (b) q · id = 0 and q′ · id > 0 holds.

Example 5.5. The negation of the condition from Example 5.3, i.e.
¬C〈“accumulated,” Acetyl CoA〉, is said to be satisfied only when Acetyl CoA is
marked as “available” (id: 1) or “unavailable” (id: 0) (i.e. no active producer), and
it will not be satisfied by any other qualifier that Acetyl CoA may be marked.

Definition (Conflicting Conditions): Two conditions C1〈q1, m〉 and C2〈q2, m〉
which are defined on the same metabolite m are said to be in conflict if
there is no possible pool status qualifier for m that would satisfy both C1

and C2.

Example 5.6. ¬C1〈“available,” Acetyl CoA〉 is in conflict with C2〈“accumulated,”
Acetyl CoA〉

In on our data model, each reaction and pathway involves a set of participating
metabolites along with their trigger conditions (i.e. metabolite pool status quali-
fiers). Then, each reaction (or a pathway) can be considered to be associated with
a set of conditions, which are created based on the participating metabolites and
their trigger conditions.

Definition (Condition Set of a Reaction/Pathway): Condition set of a reaction
(or a pathway) r, denoted as CS(r), is constructed as follows.

• For all molecules m such that m is either a substrate, or a cofactor-in, or an
activator of r, and t is a triggering status qualifier for m to activate r, C〈t, m〉 ∈
CS (r).

• For all molecules m such that m is an inhibitor of r, and t is a triggering status
qualifier for m to inhibit r,¬C〈t, m〉 ∈ CS (r).

• For all m such that m is a product or cofactor-out of r,¬C〈“severely accumu-
lated”, m〉 ∈ CS (r) (Product Inhibition6).

• If ratio T = m1/m2 of energy metabolite pairs m1 and m2 is specified as an activa-
tor for r, then C1(“accumulated,” m1) ∈ CS,¬C2(“accumulated,” m2) ∈ CS (r).
If T is an inhibitor, then ¬C1(“accumulated,” m1) ∈ CS (r), C2(“accumulated,”
m2) ∈ CS (r).

Note that the triggering status t in the above definition is a reaction-specific metabo-
lite status. As an example, for some reaction, t may be “accumulated” while, for
others, it may be “available.”

Condition set for the reverse direction of a reversible reaction is created simi-
larly by first switching the roles for metabolites that act as substrate and product,
and cofactor-in and cofactor-out in the forward (default) direction of the reaction.
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Then, according to switched roles, the condition set of the reaction is created as
described in the above definition. Note that, since inhibitors and activators are
enzyme-specific, no role switch is performed for such regulator metabolites even
if the direction of the reaction is specified as reversed in a user-formulated MQL
query.

Example 5.7. For a reaction r with (i) a single substrate m1 and its triggering
condition “accumulated” for m1, and (ii) a single product m2, the reaction condition
set CS(r) is {C〈AC , m1〉,¬C〈SAC , m2〉}.
Definition (status of a reaction): The status of a reaction in the metabolic network
is one of active, inactive, or unknown.

Initially, status of all reactions in the metabolic network is “unknown.”
Next, we define the “status” (i.e. active or inactive) of a reaction or pathway

based on the satisfaction of its associated conditions.

Definition (Active Reaction): Given a reaction r with an associated set of condi-
tions defined on the participating metabolites in r, r is considered to be active (i.e.
r has increased flux) if (i) all the conditions that involve substrates, cofactors, and
products are satisfied, and (ii) among the conditions (if any) involving regulators,
those conditions that include regulator(s) with the highest precedence are satisfied.

Definition (Completely Active Pathway): Given a pathway p with an associated
set of conditions defined on the participating metabolite pools in p, p is said con-
sidered to be completely active if all of its reactions are active. That is, (i) all the
conditions that involve its substrates, cofactors, and products are satisfied, and (ii)
all regulated reactions of p are active.

Then, it implicitly follows from the above definitions that (a) a reaction is
inactive (i.e. it has zero/decreased flux), when at least one of the conditions in its
associated condition set is not satisfied, and (b) a pathway is not completely active
when at least one of its reactions is inactive.

5.2. Processing MQLAIP queries

5.2.1. Stages of the query processing

Input to MQLAIP queries consists of a subnetwork of the metabolic network as
defined by a set of pathways in specific compartments, a dietary state condition,
a physiological condition, and a set of initial concentration changes. The query
processing has three stages.

(a) Stage 1 (Query compilation and preparation stage)

1.1 Convert dietary state and physiological condition predicates in the query into
their pre-defined concentration change sets. Take the union of such concen-
tration change sets, and let the resulting set of concentration changes be
CCS.(QPR 19)
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1.2 Associate the user-specified concentration changes in the where clause of the
query with the default pool of the corresponding metabolite (only in terms of
increase and decrease) in the specified biological compartment (QPR 7).

1.3 Take the union of user-provided set CC of concentration changes in the where
clause of the query and set CCS (from the previous step 1.1). Let the resulting
set be U . Mark those pools in U with increased concentrations as “accumu-
lated,” and those with decreased concentrations as “unavailable.”

1.4 Let P be the list of pathways in the “from” clause of the query. Expand P with
additional pathways that connect user-provided metabolites (i.e. with their
default pools) to the pathways in P (e.g. Glycerol to Didydroxyacetone 3-P
pathway in Fig. 1, which is originally not a part of Gluconeogenesis).

1.5 Let CO be the compartment set specified in the query. Extend CO with the
descendants of compartments in CO (QPR 16)

1.6 Construct a metabolic network with the pathways in P and compartments in
CO based on the graph model of Section 3 (QPRs 8(b), 14, 15). We refer to
this metabolic subnetwork as “the query subnetwork.”

1.7 Create four initially empty pathway sets, P active, P inactive1, P inactive2, and P sink.
Initially assume that all pathways in P are inactive, i.e. initialize P inactive1 = P .
Also, create a set, CtrlP , to store regulation information to be returned to the
user in the query output.

In stages 2 and 3, whenever an inhibition/activation is in question, we record
the associated regulation information and the effected reactions/pathways in CtrlP .
Since this process does not involve much complexity, for brevity, in the remaining
part of this discussion, we will not refer to the process of keeping track of this
regulation information.

(b) Stage 2 (Identifying completely active pathways)

This is the main query processing stage where the set P active of pathways that
are completely active are identified by following the biochemical principles and the
corresponding query processing rules of Sec. 2. It has two substages: expansion and
shrinking.

b.1. Expansion: Expansion is an iterative process, where, in each iteration, the set
of completely active pathways are expanded based on the availability of substrates.

2.1 Mark each pathway p ∈ P inactive1 as conditionally active, and move p into
P active, if there is at least one condition C(t, m) ∈ CS(p) where (i) m is a
substrate in p, and (ii) C is satisfied. (QPR 1).

2.2 Update metabolite pool marks (QPRs 17.1, 17.2).
2.3 If the content of P active has changed in step 2.1, go to step 2.1 for another

iteration. Otherwise, continue with the next stage.

b.2. Shrinking: Shrinking is also an iterative process, where, in each iteration, the
set of completely active pathways is shrunk based on the accumulation or availabil-
ity of energy currency metabolite pools, other cofactors, and regulators.
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2.4 For each pathway p ∈ P active, if there exists one condition C ∈ CS (p) such that
(i) C is not satisfied, and (ii) there is no other satisfied condition C′ ∈ CS (p)
involving a regulator of higher precedence with opposite effects, move p into
P inactive2 (Item (ii) is applicable only for conditions that involve regulators).
Update metabolite pool marks (QPRs 17(a), 17(b)).

2.5 If the content of P active has changed in step 2.4, go to step 2.4 for a new
iteration. Otherwise, continue with the next step.

2.6 (Locating inhibitory cycles of Sec. 5.1.1, and moving them into P sink) Initial-
ize a pathway dependency graph G(V = P, E = Ø). Identify each pathway
p1 in P inactive2 where p1 was put into P inactive2 due to a set UC ⊆ CS (p1)
of unsatisfied conditions involving a regulator of higher precedence with oppo-
site effects. However, now all conditions (except those that are surpassed due
to regulator precedence) in CS (p1) are satisfied, owing to the modified pool
marks in step 2.4. Add an edge e(p1, p2) in G for each p2 ∈ P inactive2 where
p2 is a consumer/producer of a metabolite pool which is included in a con-
dition in UC. Next, identify cycles in G, move members of each cycle into
P sink. Finally, for each edge e that is not part of a cycle in G, move e.source
into P inactive1.

2.7 If content of P active or P inactive1 has changed in step 2.4 or 2.6, go to step 2.1
for another iteration. Otherwise, terminate this stage; now P active contains all
completely active pathways.

(c) Stage 3 (Identifying partially active pathways)

In the previous stage of query processing, only completely active pathways (those in
P active) are identified. However, it is possible that some pathways may be partially
active (i.e. a subset of its reactions have flux through them) mainly to provide
bridges between completely active pathways. The last query processing stage focuses
on identifying such pathways, by locating all active reactions and placing them into
the set of reactions Ractive.

Our approach in this step builds upon the general idea that there will be an
active flux through non-regulated reactions as long as their substrates are available
(or accumulated, depending on the trigger condition), and their products are con-
sumed. Thus, in this step, we revise and adapt the approach that we developed for
locating active/inactive pathways in stage 2 to reactions.

3.1 Let R be all the reactions in the metabolic network. Create four initially
empty reaction sets, Ractive, Rinactive1, Rinactive2, and Rsink. Initialize Ractive

with all the reactions of pathways in P active, put all the remaining reactions
in R into Rinactive1. Also, create a set, CtrlR, to store reaction regulation
information to be returned to the user in the query output.

c.1. Expansion: Expansion is an iterative process, where, in each iteration, the
set of active reactions are expanded based on the availability of substrates.
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3.2 Mark each reaction r ∈ Rinactive1 as conditionally active, and move r into Ractive

if there is at least one condition C(t, m) ∈ CS(r) where (i) m is a substrate in
r, and (ii) C is satisfied. (QPR 1).

3.3 Update metabolite pool marks (QPRs 17.1, 17.2).
3.4 If the content of Ractive has changed in step 3.2, go to step 3.2 for another

iteration. Otherwise, continue with the next stage.

c.2. Shrinking: Shrinking is also an iterative process, where, in each iteration, the
set of active reactions is shrunk based on the accumulation or availability of energy
currency metabolite pools, other cofactors, regulators, and substrates.

3.5 For each reaction r ∈ Ractive, if there exists one condition C ∈ CS (r) such that
(i) C is not satisfied, and (ii) there is no other satisfied condition C′ ∈ CS (r)
involving a regulator of higher precedence with opposite effects, move r into
Rinactive2 (Item (ii) is applicable only for conditions that involve regulators).
Update metabolite pool marks (QPRs 17 (a), 17(b)).

3.6 If the content of Ractive has changed in step 3.5, go to step 3.5 for a new
iteration. Otherwise, continue with the next step.

3.7 (Locating inhibitory cycles of Section 5.1.1, and moving them into Rsink) Ini-
tialize a dependency graph G(V = R, E = Ø). Identify each reaction r1 in
Rinactive2 where r1 was put into Rinactive2 earlier due to a set UC ⊆ CS(r1)
of unsatisfied conditions involving a regulator of higher precedence with oppo-
site effects. However, now all conditions (except those that are surpassed due
to regulator precedence) in CS (r1) are satisfied, owing to the modified pool
marks in step 3.5. Add an edge e(r1, r2) in G for each r2 ∈ Rinactive2 where r2

is a consumer/producer of a metabolite pool which is included in a condition in
UC. Next, identify cycles in G, move members of each cycle into Rsink. Finally,
for each edge e that is not part of a cycle in G, move e.source into Rinactive1.

3.8 If contents of Ractive or Rinactive1 have changed in step 3.5 or 3.7, go to step 3.2
for a new iteration. Otherwise, terminate query processing; now Ractive contains
all active reactions, and Rinactive1 and Rinactive2 contain all inactive reactions.

5.2.2. A complete example

Consider the query in Example 4.2.

Stage 1:

1.1 Converting the fasting stage into its signature concentration change, we have:

S = {insulin ↓, glucagon ↑, glucose ↓, fatty acids ↑, ketone bodies ↑, glycerol ↑}.
Each concentration change statement refers to a pool of the corresponding
metabolite in S. Each hormone (e.g. insulin, glucagon) has a single pool (not
shown in Fig. 1). In terms of associated pools in Fig. 1, glucose in S refers to
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blood glucose pool #1 in Fig. 1, fatty acids in S refer to blood fatty acids pool
#2 in Fig. 1, and others in S have single pools in blood as shown Fig. 1.

1.2 User-provided concentration changes (i.e. lactate↑, alanine↑, fatty acids↑, glyc-
erol↑) in the select query of Example 4.2 are mapped to their default pools
in blood. Figure 1 shows only a single pool for each of lactate, alanine, and
glycerol in blood, so they are the default pools. For fatty acids, in this example,
the default pool in blood is pool #2.

1.3 Take the union of user-provided set of metabolite pools and those in S:

U = {insulin ↓, glucagon ↑, glucose ↓, fatty acids ↑, ketone bodies ↑, lactate ↑,
alanine ↑}

1.4 Original set P of pathways = {Glycolysis, Gluconeogenesis, TCA-Cycle, Beta-
Oxidation, Ketone-Body-Synthesis, Fatty-Acid-Synthesis}. In order to pro-
vide the connection between these pathways, and the input concentration
changes in U , the following pathways (here we use substrate2product nam-
ing convention for single step pathways or non-standard secondary path-
ways): Glycerol2Dihyroxyacetone3-P, Alanine2Pyruvate, Lactate2Pyruvate,
Pyruvate2AcetylCoA, and Respiratory Chain. Hence, we expand P as

P = {Glycolysis,Gluconeogenesis,TCA-Cycle, Beta-Oxidation,

Ketone-Body-Synthesis,Fatty-Acid-Synthesis,

Glycerol2Dihyroxyacetone3-P,Alanine2Pyruvate,Lactate2Pyruvate,

Pyruvate2AcetylCoA,Respiratory Chain}.
1.5 Revise C.
1.6 Construct the query subnetwork.
1.7 P inactive1 = P . Set P active, P inactive2, and P sink as empty. Associate each path-

way with its set of conditions.

Stage 2 (Expansion):

• Iteration 1:

2.1 Revise P active = {Beta-Oxidation, Glycerol2Dihyroxyacetone3-P, Alanine2
Pyruvate, Lactate2Pyruvate}

Revise P inactive1 = {Glycolysis, Gluconeogenesis, TCA-Cycle, Ketone-
Body-Synthesis, Fatty-Acid-Synthesis, Pyruvate2
AcetylCoA, Respiratory Chain}

2.2 Newly available metabolites due to recent additions into P active :

{AcetylCoA ↑, NADH ↑, Pyruvate ↑, Dihydroxyacetone3-P ↑}
//we only show end-products, as intermediates do not make any difference

//for this example based on the wiring in Fig. 1.
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2.3 Since P active has changed, perform a new iteration over steps 2.1 through
2.3.

• Iteration 2:

2.1 Revise P active = {Beta-Oxidation, Glycerol2Dihyroxyacetone3-P, Alanine2
Pyruvate, Lactate2Pyruvate, Gluconeogenesis, TCA-
Cycle, Ketone-Body-Synthesis, Respiratory Chain}

//bold ones are those that are newly added in this iteration.

Revise P inactive1 = {Glycolysis}
2.2 Newly available metabolites due to recent additions into P active:

{Glucose ↑, Ketone Bodies ↑, Fatty Acids, NADH ↑, ATP ↑}
//we only show end-products, as intermediates do not make any

//difference for this example based on the wiring in Fig 1.

2.3 Since P active has changed, perform a new iteration over steps 2.1 through
2.3.

• Iteration 3:

2.1 P active = {Beta-Oxidation, Glycerol2Dihyroxyacetone3-P, Alanine2
Lactate2Pyruvate, Gluconeogenesis, TCA-Cycle, Ketone-Body-
Synthesis, Respiratory Chain, Fatty-Acid-Synthesis, Pyruvate2
AcetylCoA}

P inactive1 = {Glycolysis}
2.2 Newly available metabolites (due to recent additions into P active) : { }
2.3 Since P active has not changed, continue with step 2.4.

Stage 2 (shrinking)

• Iteration 1:

2.4 The energy currency metabolite NADH has producers, Beta-Oxidation
and the TCA-Cycle, which outpaces the consumption through the respira-
tory chain. Hence, the NADH pool accumulates. NADH inhibits two rate
limiting steps of the TCA-Cycle. In addition, Fatty Acid Synthesis and
Pyruvate2AcetylCoA are inhibited by Fatty Acids and Glucagon. Hence,

P active = {Beta-Oxidation, Glycerol2Dihyroxyacetone3-P,

Alanine2Pyruvate,Lactate2Pyruvate ,Gluconeogenesis,
Ketone-Body-Synthesis, Respiratory Chain}

P inactive2 = {TCA-Cycle, Fatty-Acid-Synthesis ,

Pyruvate2AcetylCoA}
//bold ones are those that are removed from P active in this iteration.

2.5 Since the content of P active has changed, go to step 2.4 for a new iteration.
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• Iteration 2: There are no changes in the content of P active. Hence continue with
step 6.

2.6 (locating cycles and moving them into P sink as discussed in Section 5.1.1)
P inactive2 = {TCA-Cycle, Fatty-Acid-Synthesis, Pyruvate2AcetylCoA},
and TCA-Cycle is still inhibited by NADH. The dependency graph is
empty.

2.7 Contents of P active have changed. A new iteration is required starting from
step 2.1. In the last iteration, the sets of active and inactive pathways do
not change. There are no inhibitory cycles; thus, P sink is empty. That is,
we have:

P active = {Beta-Oxidation,Glycerol2Dihyroxyacetone3-P,

Alanine2Pyruvate,Lactate2Pyruvate,Gluconeogenesis,

ketone-Body-Synthesis,Respiratory Chain}
P inactive1 = {Glycolysis}
P inactive2 = {TCA-Cycle, Fatty-Acid-Synthesis, Pyruvate2AcetylCoA}

P sink = {}
Stage 2 terminates. Go to Stage 3.

Stage 3:
There is no partially active pathway in this example due to the fact that no reaction
in inactive pathways has all of its conditions satisfied based on the definitions in
Sec. 5.1. Hence, Ractive does not grow in this stage.

Final query Result: The list of completely active and completely inactive pathways
(no partially active pathways):

P active = {Beta-Oxidation, Glycerol2Dihyroxyacetone3-P,

Alanine2Pyruvate, Lactate2Pyruvate,Gluconeogenesis ,

Ketone-Body-Synthesis , Respiratory Chain}
Inactive pathways = {Glycolysis, TCA-Cycle, Fatty-Acid-Synthesis,

Pyruvate2AcetylCoA}
P sink = {} and Rsink = {}

Please see Sec. 1.1 for visualization and explanation of results.

5.2.3. Handling inconsistent input to MQLAIP queries

It is possible that the user-provided concentration change statements in a query
may be inconsistent with respect to the activated/inactivated set of pathways
included in the query result. Given a metabolite pool m and a user-provided
concentration change cc of m, such an inconsistency may occur in two different
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symmetric cases: (i) cc involves an increase in m, and major producers of m are
determined to be inactive in the query result (and probably major consumers are
determined to be active in the query result), or (ii) cc involves a decrease in m, and
major producers of m are determined to be active in the query result (and prob-
ably major consumers are determined to be active in the query result). We give
an example.

Example 5.2: Consider the metabolite pool of acetyl CoA in liver mitochondrion.
Assume that, in the result of a query Q, the consuming pathway (Fatty Acid Syn-
thesis) of acetyl CoA is inactive (perhaps, due to the inhibition of its rate-limiting
step acetyl CoA carboxylase), and, at least one of the contributing pathways (e.g.
Beta Oxidation) of the acetyl CoA pool is active (perhaps due to increased Fatty
Acid in blood, Fatty Acid is transported into liver). In such a setting, a certain
amount of acetyl CoA will accumulate, and if Q involves a concentration decrease
for acetyl CoA in liver mitochondrion, Q is inconsistent.

In characterizing such types of query input inconsistencies, we employ the closed
world assumption25 in that there cannot be a reaction r that (a) consumes/produces
m, and (b) r is not included in the metabolic query subnetwork.

Definition (Closed World Assumption): Given a metabolite pool m, and the set
R of reactions within a set of pathways P which are included in a query, let C(m)
be the consumers of m, and P (m) be the producers of m. Then, C(m) ⊆ R and
P (m) ⊆ R holds.

Now, we are in a position to formally define query input inconsistency based on
the Closed World Assumption and the Query Processing Rules 17(a) and 17(b).

Definition (Inconsistent Query Input): Given an MQLAIP query Q, let C be the
set of metabolite concentration change pairs (mi, ci) where mi is a metabolite pool,
and ci is a concentration change statement (i.e. “increase” or “decrease”), that are
either provided directly by the user, or obtained from the built-in concentration
change set of a dietary state or physiological condition included in the query. Then,
Q is called an inconsistent query if there is at least one concentration change pair
(mi, ci) ∈ C such that

• mi is marked as unavailable in the query result, and ci = increase, and/or
• mi is marked as severely accumulating or accumulating in the query result, and

ci = decrease.

Note that the above definition includes query inconsistency involving conflicts
between user-provided metabolite concentration changes and those that are
included in the signatures of a dietary state or a physiological condition predicate.

At the end of Stage 3 of query processing, the above definition is employed
to determine if the query is inconsistent. Inconsistent queries return empty query
result sets. However, as an explanation, users are also provided with those particular
metabolite-concentration change pairs that render the query inconsistent.
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5.2.4. Discussion

In this section, we present a brief discussion on the termination behavior of our
query processing algorithm which contains looping structures among/within differ-
ent steps. It is crucial that the algorithm does not get into infinite loops. In the
algorithm, since there is no loop that spans over multiple query processing stages,
each stage can be analyzed independently.

Stage 1 does not contain any looping structure.
In Stage 2, pathways are moved between three different sets that may potentially

lead to infinite loops: Pinactive1 → (Steps 2.1 ·· 2.3) Pactive → (Step 2.4) Pinactive2 →
(Step 2.6) Pinactive1. If a pathway p is continuously circulated through these three
pathway sets, then the algorithm never terminates. Such cases may happen when
there is a set of pathways which are inter-dependent on each other in a cyclic manner
through regulatory relationships. Hence, such pathways with cyclic interdependency
should be eliminated from consideration in Stage 2. Construction of a dependency
graph in step 2.7 and removal of pathways (by moving them into P sink) that form
cycles is integrated into the algorithm to prevent such infinite looping cases.

Finally, in Stage 3, the only looping structure takes place in step 3.4 which
iterates over itself. This step performs backtracking due to product inhibition at
intermediate steps of a pathway. Hence, it only expands the set of inactive reactions,
and does not manipulate the set of active reactions. Therefore, the number of
iterations is bounded by the total number of reactions in the query sub-network.

5.3. Processing MQLP F C queries

In order to answer MQLPFC queries, in the first step, the query processor needs
to compute the active and inactive pathways/reactions as it is done for MQLAIP

queries. For this step, the same query processing model which is discussed in Sec. 5
is employed. In the second step, the annotated (i.e. active, inactive paths) metabolic
query subnetwork needs to be analyzed for prevented futile cycles and their regu-
lation. We first give a definition for the concept of “prevented futile cycle.”

Definition (Prevented Futile Cycle): Given a query subnetwork graph M with
annotations regarding active and inactive paths, a prevented futile cycle is a sim-
ple cycle in M with exactly one edge annotated as “inactive,” while other edges
annotated as “active.”

The overall query processing for MQLPFC queries involves the following steps:

• Create the query subnetwork with edge labels “active” and “inactive” by invoking
the process described in Section 5.

• On the labeled (i.e. annotated) query subnetwork, perform depth-first-search
traversal, and locate all possible cycles ignoring annotations on edges regarding
activation/inactivation.

• Check each cycle against the Prevented Futile Cycle definition to see if it is a
prevented futile cycle. If it is a prevented futile cycle, locate the “inactive” edge.
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Add into the query result set (i) the prevented futile cycle with inactive edge
shown explicitly, and (ii) form an English explanation regarding the regulation
of the blocked edge based on its activators and inhibitors.

Please see Example 4.4 for a sample query and its query result.

6. Related Work

Two studies in the literature focus on the design of query languages for biochemical
networks. PQL, the pathway query language,4 employs a basic graph model where
nodes represent metabolites, enzymes, or processes, and edges represent participa-
tion of a metabolite in a reaction in different roles, or inhibition/activation rela-
tionships between two different enzymes. PQL allows formulation of different query
types that include relationship queries (e.g. reactions catalyzed by an enzyme),
neighborhood queries, and path queries. bcnQL5 is another query language with
XQuery-like syntax designed for biochemical networks. bcnQL employs an object
oriented graph model where nodes and edges have the same semantics as in PQL.
bcnQL supports the formulation of almost the same types of queries as PQL with the
improvement that bcnQL provides additional capabilities to specify multiple pred-
icates on path queries. Both PQL and bcnQL employ simpler models of metabolic
networks, not sufficiently capturing the metabolism: they do not accommodate (i)
dynamic behavior of the metabolism under different physiological or dietary con-
ditions, (ii) the compartmentalized structure of the metabolism over tissues and
organelles, and (iii) regulatory relationships between pathways. And, neither PQL
nor bcnQL provide a capability to specify an initial set of concentration changes
on key metabolites to guide query processing, and do not eliminate biologically
infeasible query results.

There are also many Web-based metabolic databases (e.g. KEGG,6 MetaCyc,7

Reactome,8 PathCase,9 etc.) with query languages. Such data sources serve well
for basic database querying via built-in or dynamically constructed queries (e.g.
AQI,26 Structured Advanced Query Page and Advanced Query Form27). KEGG6

provides basic keyword search, while MetaCyc7 and Reactome8 include advanced
query forms. LISP framework in Pathway Tools/BioCyc/MetaCyc provides a cus-
tom metabolism-specific query capability.27 However, the query languages and
forms of these data sources also have the same drawbacks listed for PQL and
bcnQL. Besides, data models of these data sources do not capture different trigger
mechanisms for pathways and/or regulators, distinct contributions of each path-
way/reaction into a particular metabolite pool, and varying occurrences of the
same pathway in different tissues.

Qualitative Physics28 and Qualitative Reasoning (QR)29–30 are employed to
model systems and environments where measured quantitative information is not
available or appropriate to use, but there exists high level (i.e. commonsense) knowl-
edge about the working principles of underlying systems. Studies that adapt qualita-
tive reasoning (or physics) into biochemistry and molecular biology2,31 (see Ref. 32
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for a review) are, at a high level, related to the MQL framework. BioSim2 is a QR
application for simulation of pathways via automated creation of “process” and
“object” models based on reactions and their participants (i.e. substrates, prod-
ucts, enzymes), respectively, in a pathway. Then these created models of BioSim
are executed by a Prolog-based simulation engine which creates a “behavior tree”
describing concentration changes for each involved metabolite and enzyme. King
et al.31 extends BioSim’s simulation approach, and proposes a model identification
framework, where given a qualitative time series set of metabolite measurements,
the goal is to identify the structure of the metabolic subnetwork. GenSim3 is another
simulation environment proposed for biochemical systems. In GenSim, users manu-
ally construct object (i.e. molecules) and process (i.e. reaction) knowledgebases via
a Lisp-based representation scheme, and define preconditions for the processes to
be active, as well as their effects, once they are active. There are also many other
similar qualitative simulation studies,33–40 which we do not discuss in this paper
due to the lack of space.

MQL does not directly compare to these simulation works, as it is not designed
as a simulation system, but as a query language and its query processing engine.
However, MQL employs similar ideas regarding the qualitative reasoning, and
(pre)conditions (constraints) that are checked for reactions to decide their activ-
ity status. MQL is different from these simulation studies in that it employs (i)
an extensive and detailed metabolism data model, and (ii) fine-tuned biochemical
principles, which are not considered by the above-listed works.

6.1. Metabolic network analysis techniques: A brief comparison

with MQL query processing

As we have stated in Sec. 1.3, MQL query processing technique can be viewed as
being in the general category of metabolic analysis techniques. In this section, we
summarize the existing metabolic network analysis techniques, and briefly compare
with MQL query processing.

Over the last 30+ years, a number of powerful mathematical modeling
approaches and their corresponding computational tools have been proposed and
used to study the dynamics of cellular metabolism. These techniques have many
goals such as determining the metabolic fluxes of reactions in the metabolic network,
or finding all the “optimal” routes, etc. They include metabolic control analysis
(MCA),10–13 flux balance analysis (FBA)14–16 (also known as constrained optimiza-
tion), metabolic flux analysis,38 and metabolic pathway analysis (more specifically,
elementary flux modes and extreme pathways).15,18–20 Next we briefly summarize
these techniques, and compare them with MQL query processing.

Metabolic control analysis. MCA is a mature mathematical methodology
for characterizing metabolic systems using the response, control, and elasticity
coefficients. It is a systems-level approach to the study of metabolism, and aims
to characterize the sensitivity of metabolic responses with respect to changes
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in enzyme activities or parameters without the use of full mathematical models
(since complete and accurate models of metabolic models are usually not available
and are not expected to be in the near future). The structure of the metabolic
system is represented by its stoichiometry. Then there are parameters and vari-
ables. Parameters are quantities that can be changed independently; they typi-
cally remain constant during the evaluation of the system. Examples are kinetic
constants, enzyme concentrations, and external inhibitors. Variables are deter-
mined by the system, and are time-dependent before reaching their steady-state.
Examples are metabolite concentrations. MCA is primarily concerned with the
description of metabolic regulation at the steady state, quantifying how changes
in “parameters” modify steady-state responses. To determine how a steady-state
response is affected by changes in a parameter, MCA relies on three types of coeffi-
cients: elasticity, response, and control. In general, three different types of software
packages can be used for modeling kinetics and control analysis of biochemical
networks:

• Generic mathematical modeling software, such as Mathematica or Matlab, which
require a mastery of the mathematics involved, and are not suitable for life-
scientists,

• Dedicated metabolic simulators such as Jarnac,41 “recommended only for very
experienced users,”42

• “SBML-capable” software packages with GUI front-end such as COPASI,43,44

JDesigner,45 or RoadRunner,46 which allow users to specify the models and run
simulations with reduced knowledge of the mathematics involved. A comparison
of a number of these packages is available on the web.47 Our own experience with
the use of JDesigner and Roadrunner is that these software packages, while quite
easy to use, have many issues,48 which we list only two here:

Lack of feedback from simulators: When an SBML model is provided as input to a
simulator, if there is any problem with the SBML file or with simulation process
itself, the simulator either (i) returns no error message (and sometimes just freezes
or exits abruptly), or (ii) returns a very generic message which often points to an
interprocess-communication error with no particular pointers on the nature of the
problem. Such a behavior leaves users almost clueless about the actual causes of a
particular problem, which turns debugging the problem into a blind trial & error
process.

No simulation parameters included in SBML: Unambiguous simulation of a model
requires specification of additional parameters (not included in SBML) such as
tolerance threshold for convergence, number of steps in each time point, and so
on. Missing specifications for such simulation parameters dramatically affects the
behavior of a simulator, as much as from producing the correct result to producing
no results.
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Flux balance analysis. FBA is a widely applied method for the computation of
stationary fluxes in large-scale metabolic networks; it is based on convex analy-
sis imposing an objective function subject to several constraints, to determine the
metabolic flux vector. The advantage of FBA in comparison with kinetic modeling
is that it also requires only (basically) the knowledge of the stoichiometry of the
network. FBA relies on the hypothesis that the most likely distribution of stationary
fluxes in the network has to be optimal with respect to a feasible optimization crite-
rion linking the fluxes with the cellular functions. Usually, the fluxes are determined
to maximize a specific network output, e.g. the production of biomass14 which is
a reasonable objective for primitive cells such as bacteria, but not necessarily for
complex eukaryotic cells. As a more general optimization criterion, the principle of
(internal) flux minimization49 and its extensions50 are proposed. Critiques of FBA
include: (a) FBA identifies only one optimal solution (while there may be other
optimal/suboptimal solutions that exist), (b) flux distributions predicted by FBA
are hypothetical (because they depend on the choice of the flux criteria used),50

and (c) it has high (exponential) computational (time) complexity.

Metabolic pathway analysis. In general, metabolic pathway analysis identifies
the topology of cellular mechanism based only on the stoichiometric structure and
thermodynamic constraints of reactions, also without requiring kinetic parameters
of reactions. The two main techniques in metabolic pathway analysis are elemen-
tary flux mode analysis (EMA)18,51 and extreme pathways analysis (EPA).19 In
comparison with FBA, metabolic pathway analysis can identify all metabolic flux
vectors; but it also has high computational complexity. However, constraints such
as nondecomposibility and systematic independence can result in finite solutions.
Trinh et al.20 gives an excellent review of elementary mode analysis ; and Klamt
and Stelling52 compare the common features, differences, and the applicability of
EMA and EPA techniques.

Elementary Flux Mode analysis. EMA reduces the metabolic network into all
possible, unique, non-divisible paths. Elementary flux modes are basically linearly
independent basis vectors in the admissible flux space, satisfying nondecomposibil-
ity and thermodynamics constraints. Put another way, given a set of EMA vectors
(each representing a flux distribution), by adding or subtracting multiples of them,
one can obtain all admissible flux distributions. Each EMA specifies a minimal
set of enzymes in that if only the enzymes of a given EMA are operating, inhibi-
tion of any of the enzymes would eliminate the steady-state flux in the system. As
compared with FBA, EMA analysis (a) provides the set of all EMAs containing
optimal/suboptimal routes converting a certain metabolite to a product, subject
to the thermodynamics constraint and nondecomposibility constraint, (b) identi-
fies enzyme subsets that always have to operate together (i.e. structurally need
each other), (c) enables the user to determine the relative importance of individ-
ual reactions for system performance under different environments, (d) allows the
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identification of nondecomposable steady-state flows, including cyclic flows, and (e)
can locate pairs of reactions that never occur together in an EMA.52

Extreme Pathway Analysis. EPA adds one more constraint to make all
extreme pathways systematically independent,19,52 which means that none of
the extreme pathways can be expressed as a non-negative combination of two or
more extreme pathways.

Even though there has been excellent algorithmic and conceptual progress,
metabolic pathway analysis remains a computationally challenging problem, due
to the high computational complexity. Free applications that compute elementary
flux modes include COPASI,43 Metatool,53–55 SNA,56 and FluxAnalyzer.57 YANA58

provides a GUI interface built on top of Metatool. YANAsquare59–60 extends YANA
with the capability to automatically import reconstructed metabolic networks of
different microorganisms from KEGG.6 For computing extreme pathways, ExPas61

is made available.

Comparison of MCA, EMA, and MQL approaches. Next, we briefly list the
differences between the MCA (or FBA), EMA, and MQL approaches:

Different goals. The four approaches are useful in different contexts, focus on pro-
viding different sets of information to users, and have different goals.

(a) MCA focuses on “control as a property of the whole system”: One can (i)
measure (at quasi-steady state) the effect of single enzyme perturbations on the
system, and (ii) calculate the control distribution, relating the system behavior
to individual reactions.

(b) EMA can be used for tasks like the recognition of operational modes, find-
ing all optimal paths, analysis of network flexibility (structural robustness,
redundancy).52 Under steady-state conditions, the metabolic fluxes of an organ-
ism can be expressed as non-negative, linear, weighted combinations of ele-
mentary flux modes62; however, identifying the weighting factors to determine
the fractional contributions of each elementary mode is difficult, if not
impossible.62,63 Visualizations of elementary flux modes within a given KEGG
pathway are also available (via YANAsquare).

(c) MQL, working with possibly the whole (and possibly large) metabolic network
within a multi-tissue (organ) environment (i.e. not within a cell) and assuming
steady-state behavior, returns to users one metabolic action scenario as well as
their visualizations within the metabolic network, allowing users to quickly con-
centrate on locating possibly activated paths for a given set of observed metabo-
lite concentration changes. MQL does not derive (steady-state) flux values of
the MCA (FBA) method, and, thus, there are no control-related (i.e. rate lim-
itation) conclusions (of the MCA method).

Different underlying fundamentals. MQL is rule-based, and employs graph search
algorithms across the whole metabolic network. In comparison, MCA and FBA
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involve solving a set of underconstrained differential equations corresponding to a
possibly smaller metabolic network at hand. EMA determines elementary fluxes via
a linear combination of “null space basis vectors” of the stoichiometry matrix.55

Ease of use. MCA (or FBA), even with the easiest-to-use GUI -oriented software
tools (such as COPASI ), requires (i) additional information to be collected and
provided by the users including the stoichiometry information, and (ii) setup and
usage expertise, for biologists to use them. The EMA tools YANA and YANAsquare
do provide user-friendly elementary flux derivations and their visualizations. In
comparison, MQL uses a metabolic pathways database, which already contains
the metabolic network, biochemistry-based rules and other information (e.g. sto-
ichiometry) so that all that a user is expected to provide is a set of observed
metabolite changes (in the form of increase/decrease/no change).

Modeling-related restrictions/assumptions. As listed above, MCA has a number of
assumptions (such as requiring a connected network of pathways)64 which are not
needed for MQL. EMA also requires connectivity.

Computational Complexity. Computational complexity of MCA is exponential in
the number of reactions involved, forcing users to use various compaction, aggrega-
tion, and clustering/merging, etc. techniques. Computational complexity of EMA
is also exponential,52 and various approaches to tackle the high complexity are
proposed such as parallel computing,65 network decomposition and “functional
conversion of flux cones.” In its worst case (with as mant backtracking itera-
tions as the number of reactions), MQL is also exponential in the number of
paths. However, metabolic networks form sparse graphs, and, for the prototype
metabolic network used in Sec. 5, the worst-case complexity has not been a limiting
factor.

7. Conclusion

Querying the metabolic behavior of organisms is important for systems biology
researchers as well as students of biochemistry. In this paper, we have presented
a metabolism query language, MQL, which enables researchers to explore the
metabolism with different constraints. The query processing of MQL is designed
in accordance with the fundamental principles that organize the cellular actions of
metabolism into a coherent and complex system. MQL is presently being imple-
mented and integrated into the Metabolomics Analysis Workbench.1,66

Future research on MQL includes

• Extending MQL’s single answer into an “answer set,” and give users alternative
results where each result corresponds to a specific resolution of a race condition
(as illustrated in Section 5.1.1).

• Incorporating the use of the stoichiometry of each reaction into MQL query
processing,
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• Handling special cases such as multiple enzymes cooperating to perform a reac-
tion,

• Extending and/or refining the biochemistry rules of Section 2 for more precise
and correct MQL query processing.
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